

XPS - UPS - ISS

Surface Spectroscopic Techniques for Chemical Analysis

Roland Barbosa, PhD June 11, 2020 11am PDT

COVALENT ACADEMY EPISODE 10

RSVP at: https://bit.ly/covalent10

Covalent Metrology

- Founded 2016
- Testing, measurement & characterization
 Platform
- **30 team members** (13 PhDs)
- 9,500 ft² lab in Sunnyvale, CA
- 1-Stop-Shop Source for Answers
 - 30 instruments in-house
 - 6 partnerships with instrument manufacturers
 - 11 partner labs
 - 6 corporate "tool shares"
- More than 275 customers (80 % repeat)

Covalent Technical Groups and Organization

hello@covalentmetrology.com

408-498-4611

- PhD Chemistry, University of Houston
- BS Chemistry, University of the Philippines
- Over 15 years of academic and industry-based research experience focused in characterizing and developing new materials in the areas of catalysis, tribology, semiconductor, energy production and advance manufacturing.
- Extensive experience utilizing various analytical techniques including XPS, TPD, HREELS, FTIR, AFM, XRD, TOFMS, UPS, TEM, etc working in different countries (Philippines, US, France, Germany, Belgium).

Episode 10 Overview

- General introduction Surfaces
- XPS
- UPS
- ISS

• Examples

- Composition, coverage and band gap analysis of ALD-grown ultra thin films
- Combined XPS/UPS argon cluster depth profile of 10nm C₆₀ film on CaF₂
- Analysis of electrode materials for lithium ion batteries
- Next Episode
- Question and Answer Session

Nexsa Surface Analysis System

- X-ray Source Type: Monochromated, micro-focused, low power Al Kα
- X-ray spot size: 10µ-400 µm
- Depth profiling: *EX06* monatomic or *MAGCIS* dual mode ion source
- Vacuum Transfer Module: sample transfer without air exposure
- SnapMap[™] : create high resolution, large area XPS images within minutes
- AvantageTM: instrument control, data acquisition, data processing and reporting
- Additional Features:
 - ISS: Ion scattering spectroscopy provides elemental composition information from the top atomic layer of the surface
 - UPS: UV photoelectron spectroscopy provides information from the valence electrons
 - reflected energy loss spectroscopy (REELS) and Raman optional

Surfaces

 Surface – boundary layer between a solid and a vacuum/gas/liquid

• Differs in geometrical and electronic structure

Surface Issues

Credit: Intel Free Press // creative commons

How Do You Characterize a Surface?

Here are a few examples of how you can characterize a surface:

Mechanical

- Roughness
- Flatness
- Hardness
- Scratch
 resistance

Chemical

- Elemental Composition
- Chemical Bonding
- Contamination

Electrical

Spreading
 Resistance

Physical

- Work Function
- Carrier Lifetime

Surface Techniques

Techniques	Information Provided	
X-ray Photoelectron Spectroscopy	XPS/ESCA	elemental and chemical state
Auger Electron Spectroscopy	AES/Auger	elemental and chemical state
Time-of-Flight Secondary Ion Mass Spectrocopy	TOF-SIMS	elemental, chemical state, molecular information
Ion Scattering Spectroscopy	ISS/LEIS	elemental
Ultraviolet Photoelectron Spectroscopy	UPS	valence band, workfunction

Surface Techniques

Photoelectric Effect

photoelectrons

- Einstein's photoelectric effect (1905)
 Nobel Prize in Physics (1921)
- Siegbahn developed the XPS technique (1960).
 - Nobel Prize in Physics (1981)
- XPS X-ray
 UPS Ultraviolet
 Spectroscopy (PES)

https://gsalvatovallverdu.gitlab.io/

Principles of Operation

Where: **BE**

BE = Electron Binding Energy **KE** = Electron Kinetic Energy

 Φ_{spec} = Work Function

Instrumentation

- X-ray sources
 - Mg K α radiation : hv = 1253.6 eV
 - Al K α radiation : hv = 1486.6 eV
- electron energy analyzer
- an ultra high vacuum environment
 - maintain sample surface integrity
 - minimize scattering of the photoelectrons
 - increase the mean free path for electrons, ions and photons.

Survey Spectrum

Quantification

For a Homogeneous sample: $I = N\sigma DJL\lambda AT$

where: N = atoms/cm3 σ = photoelectric cross-section, cm2 D = detector efficiency J = X-ray flux, photon/cm2-sec L = orbital symmetry factor λ = inelastic electron mean-free path, cm A = analysis area, cm2 T = analyzer transmission efficiency $N = I / \sigma DJL\lambda AT$ Let denominator = elemental sensitivity factor, S N = I / SCan describe Relative Concentration of
observed elements as a number fraction by:

 $C_{x} = N_{x} / \Sigma N_{i}$ $C_{x} = I_{x} / S_{x} / \Sigma I_{i} / S_{i}$

The values of S are based on empirical data.

Chemical State

- Chemical shift increase charge, increase BE
 - number of substituents
 - electronegativity of substituents
 - oxidation state
- BE increases with more bonds with electronegative atoms
- BE increases with oxidation state

Depth Profile

Angle-Resolved XPS

- depth profiling can be done by rotating the sample.
- mean free path changes depth from which photoelectrons are detected.

XPS Imaging

- XPS imaging applications:
 - distribution of chemistries across a surface
 - finding the limits of contamination
 - examining the thickness variation of an ultra-thin coating.

Ultraviolet photoelectron spectroscopy (UPS)

- like XPS with lower incident energy
 He(I) = 21.2 eV
 He (II) = 40.8 eV
- density and occupancy of electronic states in the valence band
- work function determination
- surface sensitive low mean escape depth

Valence Band

- information about the density and occupancy of electronic states
 - hybridization
 - typically require theoretical modeling
- valence spectra of TiC, VC, TiVC
 - VC is electronically different from TiC
 - Interfacial chemical reactions (CO and benzene on the surfaces).

Work Function

- work function energy needed to remove an electron from the surface of a material to the vacuum state
- Work Function Determination
 - Sensitive to surface contamination or adsorbed layers
 - Incident photon energy –(cutoff-EF)

UPS spectrum of Au surface

Ion Scattering Spectroscopy (ISS)

- Quantitative elemental composition of the outermost atomic layer
- Low-energy ion scattering spectroscopy (LEIS)
 - MEIS

23

- RBS
- Ion energy 0.1 eV to 3 keV
 - Interaction distance short (<10 Å)
 - sensitive to the outermost atomic layer

Principles of Operation

24

$$\frac{E_S}{E_0} = \left[\cos\theta \pm \left[\left(\frac{M_2}{M_1}\right)^2 - \sin^2\theta\right]^2 / 1 + \left(\frac{M_2}{M_1}\right)\right]$$

 E_S = Kinetic energy of the scattered ion M_1 = Relative atomic mass of the scattered ion E_0 = Kinetic energy of the primary ion beam M_2 = Relative atomic mass of the scattering surface atom

 θ = Scattering angle

$$\frac{M_2}{M_1} \ge 1$$

ISS Spectra

% of Energy Scattered as a Function of $M_{\rm S}$

ISS Spectrum of a phosphor-bronze sample

Cu

Cushman, et.al., Vacuum Technology & Coating April 2015, 26.

xpssimplified.com

Analysis of ALD-grown ultra thin films

HfO ₂	
SiO ₂	
Si	

Schematic of high-k stack

- Gate dielectric materials
 - ALD of HfO₂ on SiO₂/Si
 - XPS for measuring amount of hafnium deposited
 - XPS for high-k and interfacial film thickness
 - Does interfacial layer thickness change with ALD cycles?
 - Ion Scattering Spectroscopy to determine how many cycles of ALD it takes to make full coverage
 - Cannot use XPS for band gap measurement for HfO₂
 - Use REELS to measure band gap of high-k film

ALD HfO₂ on SiO₂/Si

XPS survey spectra as a function of ALD cycles

ALD HfO₂ on SiO₂/Si

Method

- Assume uniform & complete coverage of highk film on SiO₂/Si
- Acquire Hf and Si XPS data

Results

- Interfacial layer thickness not significantly affected by HfO₂ deposition
- Under model assumptions, some thickness measurements are unrealistically thin, e.g.
 0.1nm at 5 ALD cycles

ALD HfO₂ on SiO₂/Si

ISS spectra as a function of ALD cycles

HfO₂ coverage from ISS

Argon cluster (4keV Ar_{2000}^+) profiling of C_{60} on CaF_2

- C60 film on CaF₂
- Sample profiled with MAGCIS
 - A beam of 4keV, 2000 atom argon clusters was used for profiling in this case
- Changes in carbon chemistry were observed during profile

C₆₀

C1s spectrum (0s, as received surface)

Binding Energy (eV)

Adventitious carbon (contamination) was observed on top of the C₆₀ layer

294

C1s spectrum (240s etch time)

C₆₀

Argon clusters allow the adventitious carbon to be sputtered away without damaging the underlying C_{60} chemistry

Cadventitious 292 290 288 286 284 282 280 294 292 290 288 286

294 292 290 288 286 284 282 280 Binding Energy (eV)

He(I) UPS spectra from two different etch times during depth profile

- UPS spectra from the as received surface and C₆₀ layer have different structure
 - amorphous carbon contamination
- After cleaning the surface with clusters, the contamination is removed
 - UPS layer confirms the C₆₀ valence electronic structure is also preserved

Carbon spectra at different depths

The satellite structure is NOT like that of C_{60}

The carbon chemistry completely changes when well into the CaF₂ substrate

C-C

294 292 290 288 286 284 282 280 Binding Energy (eV)

C1s spectrum (600s, as received surface)

294 292 290 288 286 284 282 280 Binding Energy (eV)

 CF_2

C1s spectrum (960s etch time)

- XPS analysis at the C₆₀/CaF₂ interface indicates carbon is no longer present as C₆₀
- He(I) UPS analysis confirms that the valence electronic structure of the film is no longer like that of the C₆₀ layer

He(I) UPS spectra from two different etch times during depth profile

Analysis of Electrode Materials for Lithium Ion Batteries

Li-ion cell in operation

- Solid-electrolyte interphase (SEI) contributes to failure of the cell
- Lithium is very sensitive to air and moisture

Vacuum Transfer Module (VTM)

Analysis of Electrode Materials for Lithium Ion Batteries

Survey spectra from pristine cathode and cycled cathode samples

Analysis of Electrode Materials for Lithium Ion Batteries

Composition variation for the NMC components

Pricing for Surface Chemical Characterization

Surface Analysis Capabilities						
Technique	Information Provided	Info Depth, LOD	Make/Model	Pricing		
quantitative elemental and chemical state, depth profile, film thickness, mapping	quantitative	n 2-10nm, 0.1-1%	Thermo Scientific Nexsa	\$730/sple (hi-res)		
	elemental and chemical state, depth profile, film thickness, mapping		Phi Quantera			
			Thermo Scientific ESCALAB 250			
		PHI VersaProbe III				
UPS	valence band, work function	1-3nm	Thermo Scientific Nexsa	\$548/sple (valence band)		
ISS	elemental	monolayer, >0.1 at% for heavy elements and >10 at% for light elements.	Thermo Scientific Nexsa	\$548/sple		
quantitative Auger and chemi depth profile	quantitative elemental	2-8nm, 0.1-1%	Perkin Elmer Model 600	\$335/hr \$650/hr (high-end)		
	depth profile, mapping		PHI 710 Scanning Auger Nanoprobe			
TOFSIMS	elemental and chemical state, molecular information, depth profile, mapping	1-5nm, ppm-ppb	IONTOF Model IV	\$800/hr		
			PHI NanoTOF II			

Summary

- XPS, ISS and UPS complimentary surface chemical analysis
 - XPS elemental and chemical composition, ~3-10nm region
 - ISS elemental composition, topmost layer
 - UPS valence band, topmost layer
- The Nexsa XPS system
 - XPS, ISS, UPS
 - MAGCIS dual mode ion source
 - Vacuum Transfer Module

SOLID SURFACE ZETA POTENTIAL: INDUSTRIAL APPLICATIONS, CHALLENGES, AND SOLUTIONS

GUEST SPEAKER:

Dr. Christine Körner

Product Specialist, Materials Characterization

June 25, 2020 11am PDT

COVALENT ACADEMY Advancements in

Instrumentation Series RSVP at: https://bit.ly/covalent11

Covalent Community

COVALENT METROLOGY

\$

Covalent Community

Data Portal

Customer Access to Data & Community Content

The DATA PORTAL is used by Customers and Lab Partners for uploading and downloading data. It requires two-factor authentication and advanced password protection. Data Portal users have complete access through their home page on the portal to all Community content, and do not require a separate Community account.

Covalent Community

All Other Users

The COVALENT COMMUNITY PORTAL requires password entry. It contains webinar and other metrology and characterization-related content that we believe would be useful and educational for the materials science innovation community. It does <u>not</u> provide access to any customer data and should only be used by individuals that are not Covalent customers or lab partners.

Thank You

covalentmetrology.com