

Welcome

ADVANCED ANALYTICAL SCANNING TRANSMISSION ELECTRON MICROSCOPY (STEM), AND FUTURE DIRECTIONS

SPEAKER:

Patrick Phillips, PhD Asst. TEM Product Manager, JEOL USA

March 24, 2022 | 11am PT

COVALENT METROLOGY

COVALENT ACADEMY

Advancements in Instrumentation Series

Episode 31

Silicon Valley-based analytical labs and platform delivering quality data and expert analysis for advanced materials and device innovation

Covalent Technical Groups and Organization

PCBA, Semiconductor, and Electronic Device Metrology & Failure Analysis	Electron Microscopy and Scanning Probe Microscopy	Optical Microscopy & Spectroscopy	X-Ray Characterization
 DPA / Mechanical Cross-section Dye & Pry Test EBIC / OBIC failure analysis Hot Spot Detection IR Imaging / Emission Microscopy NIR Imaging Root-Cause Failure Analysis 	 AFM & Advanced AFM Modes (EFM, KPFM, MFM, PFM) Scanning Acoustic Microscopy (SAM) SEM (+ EDS) FIB-SEM (+ EDS) S/TEM (+ EDS / + EELS) Nano-indent / Nano-scratch 	 Chromatic Aberration Digital Optical Microscopy FTIR and ATR-FTIR Laser Scanning Confocal Microscopy Spectral Ellipsometry UV-Vis-NIR Spectroscopy White Light Interferometry 	 X-Ray Diffraction (XRD) X-Ray Reflectometry (XRR) Micron-spot ED-XRF WDXRF Micro-computed X-ray Tomography (Micro-CT) 2D X-ray Inspection & X-ray Radiography
Elemental / Chemical Composition Analysis	Particle Analysis	Material Property Characterization	Surface Spectroscopy Analysis
 EPMA GD-OES GC-MS ICP-MS and LA-ICP-MS Raman Microscopy & Spectroscopy NMR (1D or 2D; solid / liquid) 	 Dynamic Light Scattering (DLS) Laser Diffraction Particle Size Analysis (PSA) Particle Zeta Potential 	 DSC DMA & TMA DMA & TMA Porosimetry / Gas Adsorption Rheometry Gas Pycnometry TGA Surface Zeta Potential Tap Density 	 Dynamic-SIMS ToF-SIMS (Static-SIMS) Ion Scattering Spectroscopy (ISS) Ultraviolet Photoelectron Spectroscopy (UPS) X-ray Photoelectron Spectroscopy (XPS)

Covalent Partners

- **JEOL** is a global leader in cutting-edge microscopy, analytical chemistry, and materials characterization instrumentation
- New JEOL USA demonstration facility opened within Covalent's Silicon Valley lab to deepen JEOL presence in the region
 - Hosts top-of-line electron microscopes and spectrometers from JEOL, installed throughout 2021 2022
- Partners will collaborate to deepen understanding of Silicon Valley markets' analytical needs and guide the development of nextgeneration hardware, software, and applications research

Introducing

Patrick Phillips

Assistant TEM Product Manager, JEOL USA

- PhD in Materials Science and Engineering in 2012 from The Ohio State University
- Research Assistant Professor at the University of Illinois Chicago
- Joined JEOL USA in 2016
- Previous research projects and current interests include:
 - Cs-Corrected STEM/EELS/EDS of metals
 - Battery materials
 - Oxides
 - 2D structural characterization

Advanced Analytical STEM and Future Directions

JEOL USA

Brief Outline

- Introduction/Current Capabilities
- Critical Technology
- How Far Can We Go with "Workhorse" S/TEMs?
- Looking Beyond

Advanced Applications and Cs-correction

Why Scanning Transmission Electron Microscopy?

- Robust to thickness and defocus changes (no contrast reversals)
- Thick specimen imaging
- Defect analysis
- Structural determination
- Changing β yields multitude of signals
 - HAADF (~Z² intensity)
 - LAADF (strain contrast)
 - ABF (light element contrast)
- Wealth of structural, chemical, and electronic information at the atomic scale
- Spatially-resolved analytical information with EDS/EELS

Simplified Lens system for STEM

The Needs of Analytical Microscopy

- Good source of electrons
- High spatial resolution
- Analytical characterization
 - Chemical sensitivity
 - Fine structure
- Good sampling rates
- Reduced beam damage

Can we do all this in a "workhorse" S/TEM??

Dislocation core in STO:

HRTEM of Nanoparticle:

10

Chemical analysis of semiconductor:

Solutions for Innovation JEOL

Common Perceptions of "Workhorse" Instruments

- Low Spatial Resolution
- 200 kV only to maintain spatial resolution
- EDS Spectroscopy
 - Time consuming
 - Low magnification
 - Lack of probe current/resolution capabilities for high-mag mapping
- Electron Energy Loss
 - Core-loss mapping OK
 - Fine structure determination not possible

Dislocation core in STO:

Chemical analysis of semiconductor:

HRTEM of Nanoparticle:

- High Spatial Resolution
 - Cold FEG, redesigned electron optics, highly stabilized column
 - Conventional TEM

Overaged Al alloy, incident beam parallel to [110] 200kV

- High Spatial Resolution
 - Cold FEG, redesigned electron optics, highly stabilized column
 - Conventional TEM
 - High-resolution TEM

56.6 pm 51 pm

- High Spatial Resolution
 - Cold FEG, redesigned electron optics, highly stabilized column
 - Conventional TEM
 - High-resolution TEM
 - High-resolution STEM

Sample : Si(110) Acc. : 200 kV Probe current : 21 pA N. of pixel : 1024 x 1024

Solutions for Innovation JEOL

- High Spatial Resolution
 - Cold FEG, redesigned electron optics, highly stabilized column
 - Conventional TEM
 - High-resolution TEM
 - High-resolution STEM

probe current : 1 pA

- Low kV OK ٠
 - Cold FEG helps retain spatial resolution at lower voltage

- EDS Spectroscopy
 - Flexible probe current conditions which maintain spatial resolution
 - Advanced detector technology
 - Routine, large-area maps, 3D
 Tomography reconstructions

Semiconductor Device

Reconstructed 3D EDS maps

2D elemental Maps

- EDS Spectroscopy
 - Flexible probe current conditions which maintain spatial resolution
 - Advanced detector technology
 - Routine, large-area maps, 3D
 Tomography reconstructions

Semiconductor Device

EDS Tomography Reconstruction Volume = 313 x 313 x 100 nm³

- EDS Spectroscopy
 - Flexible probe current conditions which maintain spatial resolution
 - Advanced detector technology
 - Routine, large-area maps, 3D
 Tomography reconstructions
 - Atomic-resolution mapping

Sr Ti+0 0

Sample : **SrTiO₃[100]** Probe currents : 50.2 pA N. of pixels : 256 x 256 Acquisition time : 10 min

Not only Sr and Ti, but also O atomic sites can be visualized.

- EDS Spectroscopy
 - Flexible probe current conditions which maintain spatial resolution
 - Advanced detector technology
 - Routine, large-area maps, 3D
 Tomography reconstructions
 - Atomic-resolution mapping

Sample : **GaAs[110]** Probe currents : 20.5 pA N. of pixel : 256 x 256 Acquisition time : 10 min

The dumbbell structure of Ga and As (0.14 nm) can be visualized by EDS.

• Electron Energy Loss

- CFEG energy resolution of 0.33 eV
 - 2-3x better than TFEG
 - Probe current and spatial resolution retained for mapping and fine structure
 - Core-loss

Semiconductor Device

- Electron Energy Loss
 - CFEG energy resolution of 0.33 eV
 - 2-3x better than TFEG
 - Probe current and spatial resolution retained for mapping and fine structure
 - Core-loss
 - Fine structure

Energy resolution : 0.35eV Probe current : 400pA N. Of pixels : 128 x 256 Dwell time : 0.01s

- Electron Energy Loss
 - CFEG energy resolution of 0.33 eV
 - 2-3x better than TFEG
 - Probe current and spatial resolution retained for mapping and fine structure
 - Core-loss
 - Fine structure

- Electron Energy Loss ٠
 - CFEG energy resolution of 0.33 eV
 - 2-3x better than TFEG
 - Probe current and spatial resolution retained for mapping and fine structure
 - Core-loss
 - Fine structure —
 - Plasmon resonance (low-loss regime)

Surface Plasmon Resonance of Ag

Courtesy of Dr. T Sannomoiya Tokyo institute of Technology

2.8 -3.3 eV

1.1 -1.3 eV

2.0 -2.4 eV

How Did We Get Here?

- Introduction/Current Capabilities
- Critical Technology
- How Far Can We Go with "Workhorse" S/TEMs?
- Looking Beyond

Advanced Applications and Cs-correction

"Workhorse" S/TEM...Where are we?

1. Smart design:

Redesigned electron optics; design combining ease of use, high performance, high stability

2. Quad-Lens condenser system:

Easy selection of illumination conditions; Spot size/convergence angle remain independent

3. Advanced Scan system:

High stabilized multifunction STEM

4. Improved Cold FEG :

High brightness with small energy spread

5. Dual EDS:

Highly efficient analysis

STEM Detection Methods

Diffraction Pattern (STEM)

ADF:

Z-contrast Robust, Easy to Understand

BF:

Close to conventional TEM Phase Contrast (not straightforward)

ABF:

Enhanced contrast for light elements Robust, Easy to Understand

Segmented STEM:

DPC imaging for E/B field Post-Process (limited)

Pixelated STEM:

All information of diffraction pattern Post-Process

■ Standard detector (ADF, BF, ...) gives *Integrated* signals only.
 ■ Quantitative analysis ⇒ *Fine Structure* of diffraction patterns.

More on Detectors Later...

STEM Detectors

• HAADF

- Z-contrast
- ABF
 - BF-STEM/HR-TEM has strong dependence on thickness/defocus; suffers contrast reversals
 - ABF is more robust to these parameters;
 more directly interpretable
 - Light element imaging at atomic resolution
 (O, Li, H...)
 - Collection angle typically ½ $\theta_{\rm c}$ $\theta_{\rm c}$
- SE/BE
 - Surface-sensitive
 - Morphology

Findlay et al., Microscopy 2017 Findlay et al., Ultramicr 2010

SE/BE Detectors

Detection of Surface Features...

TEM

PtRu / graphite

80 kV

CFEG Benefits

- Small energy spread
 - 0.33 eV, compared to 0.8-1.0 eV for TFEG
 - Improved EELS resolution
 - Fine structure determination
- More current in smaller probe
- Improved spatial resolution; particularly low kV work
- Highly stable probe current and vacuum system

Probe Current Flexibility

11500 Zero loss FWHM: 11000-0.82 eV Schottky (100 µA) 10500-0.50 eV Cold-FEG (20 µA) 10000-0.42 eV Cold-FEG(12 μA) 9500-9000-0.26 eV Cold-FEG(0.1 μA) 8500-8000-7500-7000-6500-6000-5500-5000-4500-4000-3500-3000-2500-2000-1500-1000-500-01 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 eV

- Highly tunable probe current and energy resolution
- Important to retain the spatial resolution

Improved Energy Spread and Probe Size

Why we prefer a CFEG source for analytical work

Solutions for Innovation JEOL

Probe Current Flexibility

- Highly tunable probe current and energy resolution
- Important to retain spatial resolution
- Multiple avenues to change probe current/probe size/energy resolution

EDS in the STEM

- Inherently inefficient
- Pole piece obstructions, sample proximity, etc.
- Best to avoid prolonged scanning or very high probe currents
 - Sample damage

- Solutions
 - Holders and Pole Pieces designed

specifically for EDS geometry

- Dual Silicon Drift Detectors (SDDs)
 for efficiency
- Large detectors, clean signal
 - 1.7sr solid angle
- P/B > 4000
- < 1% Spurious Peaks

Top-down view of column

Dual SDD system

Specimen Holder

Solutions for Innovation JEOL

Brief Outline

-(37

- Introduction/Current Capabilities
- Critical Technology
- How Far Can We Go with "Workhorse" S/TEMs?
- Looking Beyond:

Advanced Applications and Cs-correction

Low kV - Energy Resolution and Fine Structure

Carbon - 80 kV

Solutions for Innovation JEOL

Pushing the Limits

LSCO-LAO Superlattice

High-resolution STEM and EELS/EDS Resolving O-vacancies and fine structure pre-peak changes with position

Pushing the Limits

LSCO-STO Superlattice

High-resolution STEM and EELS/EDS Ti and O fine structure – Ti4+

Atomic-resolution spectroscopy without a Cs corrector

Pushing the Limits

LSCO-STO Superlattice

High-resolution STEM and EELS/EDS Ti and O fine structure – Ti4+

Atomic-resolution spectroscopy without a Cs corrector

Meteoritic Hibonite – CaAl₁₂O₁₉

Role of Mg/Ti in defect structure observed at atomic resolution

Figure 1. HAADF image from the [110] of hibonite showing stoichiometric hibonite (H) and an extended defect (D). The inset shows the distribution of heavy elements in hibonite and our model for the atomic arrangement in the defect.

L.P. Keller et al., 49th Lunar and Planetary Science Conference 2018

Solutions for Innovation JEOL

Meteoritic Hibonite – CaAl₁₂O₁₉

Role of Mg/Ti in defect structure observed at atomic resolution

Figure 1. HAADF image from the [110] of hibonite showing stoichiometric hibonite (H) and an extended defect (D). The inset shows the distribution of heavy elements in hibonite and our model for the atomic arrangement in the defect.

Figure 3. EELS spectra from the Ti $L_{2,3}$ edge in meteoritic perovskite (blue) and hibonite (red). The low energy shoulders indicated by blue arrows are consistent with the presence of Ti³⁺ in hibonite.

Plasmonics

Phase-separated Ag-Cu nanoparticles

EDS Maps

Tokyo Institute of Technology J. Phys. Chem. C 2017, 121, 27029–27035

Plasmonics

Phase-separated Ag-Cu nanoparticles

J. Phys. Chem. C 2017, 121, 27029–27035

Brief Outline

- Introduction/Current Capabilities
- Critical Technology
- How Far Can We Go with "Workhorse" S/TEMs?
- Looking Beyond:

Advanced Applications and Cs-correction

DPC STEM

Differential Phase Contrast (DPC)

Detect local *Electrical / Magnetic fields* through incident beam deflections

Courtesy of Professor Naoya Shibata, University of Tokyo

Electrical Field Detection

Using STEM differential phase contrast (DPC) it is possible to directly observe the local electromagnetic fields within a material. The image on the left is an example of an analysis of the internal electric field of a pn junction in a semiconductor. The image on the right is the result of an atomic-resolution DPC observation of SrTiO₃.

N. Shibata et al.; 2015; Scientific Reports.

N. Shibata et al.; 2017; Nature Comm

Magnetic Field Detection

Using the DPC method it is possible to see the various magnetic structures as well as the quasi-particle 'skyrmions' (left), which have a vortex-like magnetic structure. The image on the right is an example of magnetic domain structures in rare earth metal dysprosium (Dy).

 \bigcirc

Field Observations

N. Shibata et al.; 2015; Scientific Reports.

Shibata et al. Nature Comm 2017

Analysis for Electromagnetic Field:

- SAAF + STEM Lorentz (OL OFF)
- Semiconductor, Magnetic Material
- Easy operations as in standard STEM

Atomic Resolution DPC:

- SAAF + STEM Cs Corrector
- Atomic scale information of localized field
- No changes in optical system

New imaging mode – Optimum BF STEM

- Maximum S/N
- Low dose
- Light Element Detection
- Live

K. Ooe et al., Ultramicroscopy 220, 113133 (2021)

OBF – Dose-Efficient Imaging

SrTiO₃ [001]

300kV, alpha = 24 mrad

High Contrast – Small Convergence

Semiconductor material

Accelerating Voltage : 200 kV Convergence Semi-angle : 2 mrad

- High contrast under small convergence angle conditions
 - Non-corrected, Lorentz mode, etc.
- Light Element Detection

Low Dose, Low Scattering Conditions

ARM300F2 300kV, alpha = 16 mrad Probe current = 0.5 pA

Single Layer Graphene NEOARM 60kV, alpha = 35 mrad

IDES Integrated Technology

- IDES technology dramatically expands microscope flexibility and functionality
 - Beam damage mitigation

fs

- Speed
- Optical illumination
- EDM Electrostatic Dose
 Modulator

Electrostatic Dose Modulator

EDM with Synchrony

EDM Electrostatic dose modulation

- Electrostatic shutter gives 10⁵x increase in beam blanking speed (50ns vs 5ms magnetic blanker)
- On-the-fly dose control without affecting imaging conditions
- Synchrony Nanosecond timing control
- STEM synchronization
- Programmable dose structuring

EDM with Synchrony

- Single scan STEM Image
 - Si [110] HAADF, 300kV
- Changing duty ratio from
 - 90% -> 10% -> 90%
- Frequency of 500 kHz (2 µs)
- Pixel dwell time with 19 μs/pix (1024x1024 pixels)

- True Area Scan
- Integration with JEOL EDS software and scanning system
- True Area Scan automatically removes illumination during flyback
- Reduces specimen damage and coincidence loss

EDM Synchrony

This is unprocessed STEM data showing a dose pattern programmed by EDM Synchrony that includes the JEOL IDES logo, fractal patterns, and a checkerboard pattern.

Extreme Functionality of "Workhorse" S/TEM

- CFEG
 - High probe current
 - Maintain energy resolution for EELS fine structure analysis
- Efficient EDS
 - High-throughput
 - Decreased dwell time
- Atomic-resolution imaging and spectroscopy

Solutions for Innovation **JEOL**

Coming Up...

On May 19

CHARACTERIZATION OF CLIMATE BENEFICIAL MATERIALS BY GAS SORPTION

SPEAKER: Mark Thomas, PhD Lead Scientist,

Anton Paar Quantatec

May 19, 2022 | 11am PT

COVALENT METROLOGY

On June 23

Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) Analysis

In partnership with Toray Research Center, Inc. 61

Thank you for joining us! To show our appreciation

We're offering attendees a Special One-time Discount

10% Attendee Discount

for your next S/TEM Project

Schedule a free **Discovery Appointment**

to talk with a Covalent Expert

Calendly link is shared in the chat

Login to Access this Recording

COVALENT METROLOGY

Schedule Pickup

LOGIN

Search Technique or Measurement...

Q

Access Covalent Port () Covalent Academy

RESOURCES

 $(\mathbf{\times})$

BLOG

Contact Us

ABOUT

COVALENT

Customer Access to Data & Community Content

The DATA PORTAL is used by Customers and Lab Partners for uploading and downloading data. It requires two-factor authentication and advanced password protection. Data Portal users have complete access through their home page on the portal to all Community content, and do not require a separate Community account. Communit

BUSINESS

SERVICES

PRICING

Newsroom

Resource Library

All Other Users

INITY PORTAL requires ains webinar and other erization-related content be useful and

educational for the materials science innovation community. It does <u>not</u> provide access to any customer data and should only be used by individuals that are not Covalent customers or lab partners.

LOGIN TO DATA PORTAL

LOGIN TO COMMUNITY PORTAL

Or Explore the New Covalent Academy Learning Center

MODERNIZING

MICROSCOPY

CAPABILITIES AND

PLICATIONS OF

STEM

METHODS:

Covalent Academy Get more from your data by building your knowledge of advanced materials characterization. SEARCH Search resource topics From То Туре Duration Select • Select Select • Select

Learning Center

Browse All Topics

All past episodes now available on-demand at:

https://academy.covalentmetrology.com

UPGRADING

METROLOGY

IMPROVED

Cyrille Charle

ligital Sur

COVALENT

ACADEMY

Q&A Session

