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Welcome, Viewers



Modern, digitally-empowered analytical services platform delivering quality data 

and expert analysis to accelerate advanced materials and device innovation.

Flexible

Business Models

LiveViewTM (real-time 

collaboration)

Co-op and Tool-share 

Opportunities

Training and Certification 

on Instrumentation

Laboratory Audits

Who We Are, 

Who We Serve

50+ People, 14 PhDs

Comprehensive,

Modern Analytical 

Capabilities

$20M +State-of-art Lab 

in Sunnyvale, CA

600+ Clients,

15-30 new clients / week
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Partner to World’s 

Leading Instrument 

Manufacturers and Labs

Expanding access to 

Advanced Instruments 

and Analysis Tools

Lab Connections and 

Applications Learning 

Rich Network

of Partnerships

High-touch, High-

Quality Services

Ionic Membership 

Program

Enterprise Metrology 

Solutions

Instant, Secure Access 

to Data and Reports

Expanding Toolkit in 

Custom Digital Platform

Comprehensive 

Solutions Stack

50+ Cutting-edge 

instruments in-house, 

150+ Techniques

Analytical Services

Advanced Modeling

Method Development

Custom Consulting 

Solutions
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Covalent’s Analytical Services & Technical Groups

Electron Microscopy

• S/TEM

with EDS; EELS; Electron 

Diffraction; SAED

• FIB-SEM & HR-SEM

with EDS; EBSD; 3D Tomography

• Lamella Preparation

incl. specialized lift-outs

Failure Analysis

• Root-Cause Failure Analysis

• DPA / Mechanical X-section

• Dye & Pry Test

• Hot Spot Detection

• Emission Microscopy

• NIR / IR Imaging

• EBIC / OBIC failure analysis

Misc. Material Properties

• Thermal Analysis: DSC, TGA

• Surface Zeta Potential

• Porometry / Pycnometry

• Gas Adsorption / Chemisorption

• Foam Density / Skeletal Density / 

Tap Density

• Particle Analysis: DLS / ELS / 

size distribution / zeta potential

Analytical Chemistry

• Mass Spectroscopy:

ICP-MS and LA-ICP-MS; GCMS

• ICP-OES / GDOES

• Raman

• NMR (solid / liquid + 1,2,3 nuclei)

• XPS, UPS, ISS

• SIMS, TOF-SIMS

X-ray Characterization

• X-Ray Diffraction (XRD)

• X-Ray Reflectometry (XRR)

• Micro-computed X-ray 

Tomography (Micro-CT)

• 2D / 2.5D / 3D X-ray Inspection & 

X-ray Radiography

• ED-XRF / WD-XRF

Mechanical Testing

• AFM & Advanced AFM Modes 

(EFM, KPFM, MFM, PFM, PiFM)

• Nano-indent / Nano-scratch

• Rheometry / Viscosity

• DMA / TMA 

(bend/stretch/compression)

• Tensile testing

Microscopy & Profilometry

• Chromatic Aberration

• Digital Optical Microscopy

• Laser Scanning Confocal 

Microscopy

• White Light Interferometry

• Scanning Acoustic Microscopy 

(SAM)

Optical Characterization

• Fourier Transformed Infrared 

Spectroscopy

(FTIR and ATR-FTIR)

• Spectral Ellipsometry & Advanced 

Optical Modeling

• UV-Vis-NIR Spectroscopy
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Shivesh Sivakumar
Member of Technical Staff, Materials, Chemistries and Surfaces

Covalent Metrology

• Shivesh joined Covalent 3 years ago as a Senior Engineer and established a 

proven record interfacing with customers and scoping effective testing 

strategies.

• He has risen quickly to lead the company's thermal and mechanical 

testing sectors and was promoted in 2024 to his current MTS role.

• Experienced in various experimental and theoretical techniques, 

including nanomechanical testing methods, scanning probe microscopy, 

and ab initio modeling.

• Shivesh completed his B.Tech in Materials Engineering at NIT 

Tiruchirappalli, India, and an M.S. at the University of Washington in 

Seattle.

Introducing Today’s Speaker
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• Background on nano-indentation

• Instrumentation (Anton Paar UNHT3)

• Introduction to dynamic nano-indentation (Sinus)

• Case studies with Sinus

▪ Curing of epoxy adhesive

▪ Stress-strain analysis of polymer film

Overview
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Pressing ahead 
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• Mechanical test derived from conventional hardness testing (Vickers, Brinell, etc).

• An indenter of known geometry is pressed into a sample surface.

• Measurement of imprint size yields hardness. Measurement is manual (optical).

What is indentation testing?

Macro

1 μm 
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• Also known as instrumented indentation or depth-sensing indentation.

• Normal force and penetration depth are accurately measured to get an indentation curve.

• From the force-displacement curve, several mechanical material parameters can be calculated.

What is nano-indentation?

F
o

rc
e

Displacement
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• Also known as instrumented indentation or depth-sensing indentation.

• Normal force and penetration depth are accurately measured to get an indentation curve.

• From the force-displacement curve, several mechanical material parameters can be calculated.

• Berkovich indenter is most popular; used for ceramics, metals, thin films, polymers.

What is nano-indentation?

F
o
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Displacement

Loading

Unloading
10 nm 
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Nano-indentation calculations – Oliver and Pharr model

• Slope of unloading curve is the stiffness of the material. 

• Oliver and Pharr method involves fitting a polynomial to the 

unloading curve. 

ℎ𝑐 =  ℎ𝑚 − 𝜀
𝐹𝑚

𝑆

Calculate Contact Depth

𝐴𝑝 =  𝐶0ℎ𝑐
2 + 𝐶1ℎ𝑐 + 𝐶2ℎ𝑐

1/2 + 𝐶3ℎ𝑐
1/4 + ⋯

Calculate 

Projected 

Area of 

Contact

𝐻𝐼𝑇 =
𝐹𝑚

𝐴𝑝

Calculate 

Hardness

𝐸𝑟 =
𝜋

2

𝑆

𝐴𝑝

Calculate

Reduced Modulus

1

𝐸𝑟
=

1 − 𝑣2

𝐸𝐼𝑇
+

1 − 𝑣𝑖
2

𝐸𝑖

Calculate 

Modulus

from properties of indenter tip and sample’s Poisson’s ratio, 𝑣
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• Semiconductors/micro-electronics: mechanical properties (modulus, hardness etc).

• Thin films and coatings: hardness, residual stresses.

• Protective coatings: fracture toughness.

• Metals and alloys: hardness at weld interface.

• Composites and multiphase materials: mechanical properties of different phases.

• Biomaterials: stiffness of cartilage, bone and dental implant materials; creep of biomaterials.

What kind of problems can you solve with nano-indentation?
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• Deposited materials: depth profiling of mechanical properties.

• Polymer coatings: adhesion, vibration damping.

• Soft metals and polymers: stress-strain analysis, yield strength.

What kind of problems can you solve with nano-indentation?
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• Tip area calibration is important to making accurate and repeatable measurements.

• Dirty indenters and surfaces can cause inaccurate measurements.

• Minimize substrate effects by keeping indent depth within 10% of film thickness.

• Ensure surface roughness is significantly lower than indent depth (depth > 10x average 

roughness).

• Proper sample mounting avoids compliance issues. 

Challenges / best practices with nano-indentation
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Instrumentation
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Anton Paar UNHT3

• The most accurate nano-indentation tester

• Two independent depth and load sensors 

provide true control of forces and indentation 

depth

• Unique patented active top surface referencing 

• The nano-indenter with the highest stability on the 

market

• Negligible thermal drift down to 10 fm/sec 

without any depth correction

• Excellent accuracy for long-time measurements 

such as creep tests.

Indenter Reference
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Anton Paar UNHT3

• High throughput and measurement speed 

(>600 measurements per hour)

• A sample can be measured immediately 

after installation without waiting hours 

for thermal stabilization

• Quick Matrix mode: more than 600 

measurements per hour

• Additional dynamic analysis with Sinus

Parameter Value

Load range 0.01 mN – 100 mN

Load resolution 0.1 µN

Maximum penetration depth 100 µm

Depth resolution 0.1 nm

Temperature range Up to 200 °C

Parameter Value

Load range 0.01 mN – 100 mN

Load resolution 0.1 µN

Maximum penetration depth 100 µm

Depth resolution 0.1 nm

Temperature range Up to 200 °C

Frequency range 0.1- 40 Hz
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Dynamic nano-indentation (Sinus)
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What is Sinus?

• Also called continuous stiffness measurement (CSM).

• Harmonic oscillations are superimposed to the quasi-static load profile.

y = Asin(ωx+δ)

A

λ
y

x

Force

Displacement

Quasi-static
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What is Sinus?

• Also called continuous stiffness measurement (CSM).

• Harmonic oscillations are superimposed to the quasi-static load profile.

Force

Displacement

Quasi-static

Force

Displacement

Dynamic
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Sinus methods

Force

Displacement

Sinus during loading

• Depth profiling of mechanical properties

• Stress-strain analysis

Force

Displacement

Pause Sinus

• Viscoelastic properties of polymers



21

Refresher on DMA (Dynamic Mechanical Analysis)

• DMA is used to gather information about a 

material‘s mechanical properties in 

dependence of:

• Temperature

• Time and/or

• Frequency

Time

Frequency Temperature

Material Behavior

• Excitation of a specimen with a sinusoidal 

stress/strain 

→ Measurement of the response

(phase shifted) strain/stress

• Calculation of the resulting Complex Modulus is 

important for polymers as they show 

viscoelasticity
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Refresher on DMA (Dynamic Mechanical Analysis)

Stress

σ(𝑡) = ො𝜎 ∗ sin ω𝑡

Strain

𝜀(𝑡) = Ƹ𝜀 ∗ sin(𝜔𝑡 − 𝛿)

|E∗| =
ො𝜎

Ƹ𝜖
= E′2 + E′′2

tan 𝛿 =
E′′

E′

E∗ = E′ + iE′′

Complex Modulus E* [Pa]

• “Dynamic” modulus

Storage Modulus E’ [Pa]

• Elastic contribution

• Stored deformation energy

Loss Modulus E’’ [Pa]

• Viscous contribution

• Dissipated deformation energy

Loss Factor tan 𝛿 [-]

• Dimensionless damping factor

• ‘Index of viscoelasticity’
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DMA by nano-indentation

Time

F
o

rc
e

Time

F
o

rc
e

• Sinus measures δ and calculates the complex modulus!

• Powerful tool for viscoelastic characterization of polymers.
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Challenges/best practices with Sinus

• Sinus amplitude typically not to exceed 10% of indentation load.

• Constant strain rate loading for polymers; sufficient dwell time to mitigate creep.

• Verify calibration of indenter; ideal indenter shape (Reff)? 

• Frequency range is limited compared to bulk DMA.

AFM image of indent SEM image of indenter
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Applications and Case Studies



26

Case Study 1: Curing of Epoxy Adhesive
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Introduction

Motivation:

Epoxies are widely used adhesive materials whose mechanical properties depend on the degree 

of cure. Incomplete curing of epoxy can lead to downstream problems such as delamination.

Problem Statement:

Investigate viscoelastic properties (E’, E’’ and tan δ) near cure state of epoxy. The epoxy is 60 μm 

thick and lies on a substrate. Previous DSC work showed a cure onset around 150 °C, which 

guided nano-indentation.
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Methods

Parameter Value

Indenter Spherical, 20 micron radius

Sinus profile Pause Sinus

Dwell time
Load pause = 15 s

Sinus pause = 30 s

Load profile Constant strain rate 0.1 s-1

Temperature 150, 175, 200 °C; Quick mode

Max load 75 mN

Sinus amplitude 7.5 mN

Sinus frequency 10 Hz

F
o

rc
e

Time



29

Results: E’ and E”

• Storage modulus (E’) increased 

with temperature, indicating that the 

adhesive becomes stiffer as the 

temperature rises.

• Loss modulus (E’’) decreased with 

rising temperature suggests that the 

adhesive exhibits reduced viscous 

deformation energy at elevated 

temperatures.

• Progress in curing with temperature 

correlated with  a transition to a 

more rigid state.
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Results: tan δ (loss factor)

• Tan δ, which represents the 

material’s damping capacity, 

decreased with temperature.

• A more rigid adhesive is associated 

with higher strength and load-

bearing capacity.

• Monitoring changes in E’, E’’ and 

tan δ can help with quality control 

and process optimization to ensure 

consistency.
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Case Study 2: Stress-Strain Analysis
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Introduction

Motivation:

Polycarbonate films are widely used in microelectronics, such as printed circuit boards. The films 

experience mechanical and thermal stresses, which can lead to failure.

Problem Statement:

Determine the yield stress of a polycarbonate film.

Stress

Strain
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Background

• Spherical or flat-punch indenters apply gradual 

strain.

• Select indenter based on material properties 

(modulus, thickness) to ensure shear stress 

exceeds Tresca/Von Mises stress of material.

• Verify indenter with techniques like AFM (Reff).

• Applicable to polymers and soft metals.

• Determine representative stress (σ) and strain (ε) 

using load (F) and contact radius (a), with 

constants K and C. 

Hertzian contact model

σ =
𝐹

𝐾𝐴
𝜀 =  𝐶

𝑎

𝑅

Stress Strain
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Methods

Parameter Value

Indenter Spherical, 20 micron radius

Load profile Constant strain rate 0.1 s-1

Max load 10 mN

Sinus amplitude 1 mN

F
o

rc
e

Time

Sinus loading

Hold

Unloading
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Results

• Stress-strain analysis revealed elastic region, onset of plastic deformation and plastic region.

• Software allows automatic stress-strain analysis to calculate yield stress.

• Yield stress helped benchmark mechanical performance.
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Conclusions and key take-aways

• Nano-indentation is a powerful tool for nano-scale mechanical characterization.

• Sinus unlocks advanced capabilities such as depth profiling, stress-strain analysis and 

viscoelastic characterization.

• Sinus is the only technique suitable for advanced mechanical characterization of polymer thin 

films.

• Accurate measurements require careful calibration and proper sample mounting. 

• Frequency range of Sinus is limited compared to conventional DMA.
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View On-Demand Recordings in

the Covalent Academy

Register and start exploring at:

academy.covalentmetrology.com

https://academy.covalentmetrology.com/


Q & A

Session



Thank you.
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