Welcome to today's episode:

Precision in Thin Film Metrology

Techniques, Challenges, and Real-World Applications

Lyle Gordon, PhD

Director of Materials, Chemistry and Surfaces Group, Covalent Metrology **Max Junda, PhD** Senior Member of Technical Staff,

Covalent Metrology

APR 10, 2025 11 AM Pacific Time

COVALENT ACADEMY

Industrial Applications of Advanced Metrology Episode 42

Introducing today's speakers

Dr. Lyle Gordon

Director of Materials, Chemistry & Surfaces Group, Covalent Metrology

Dr. Gordon joined Covalent in 2023 where he manages the Materials, Chemistry and Surfaces group, overseeing X-ray metrology, analytical chemistry, and surface science. He has extensive expertise in time-of-flight mass spectrometry, particularly related to his work on atom probe tomography. Dr. Gordon completed his Bachelor of Applied Science at the University of Toronto, his PhD in Materials Science at Northwestern University, and was a postdoctoral fellow for the Department of Energy at Pacific Northwest National Lab.

Dr. Max Junda

Senior Member of Technical Staff, Covalent Metrology

Dr. Junda joined Covalent in 2019 to grow and develop the company's ellipsometry offerings. Since then, he has helped provide measurement, modeling, and consulting services to over 110 separate customers across many industries. Max's particular interest is in developing customized data collection and optical modeling methods that expand the areas where ellipsometry can be used beyond typical film thickness and optical property measurement. He enjoys working directly with customers to understand their specific problems and data needs so that the experiments can be tailored to each application.

Modern, digitally-empowered analytical services platform delivering quality data and expert analysis to accelerate advanced materials and device innovation.

Comprehensive Solutions Stack

50+ Cutting-edge instruments in-house, 150+ Techniques

Analytical Services

Advanced Modeling

Method Development

Custom Consulting Solutions

High-touch, High-Quality Services

Ionic Membership Program

Enterprise Metrology Solutions

Instant, Secure Access to Data and Reports

Expanding Toolkit in Custom Digital Platform

Flexible Business Models

LiveView[™] (real-time collaboration)

Co-op and Tool-share Opportunities

Training and Certification on Instrumentation

Laboratory Audits

Rich Network of Partnerships

Partner to World's Leading Instrument Manufacturers and Labs

Expanding access to Advanced Instruments and Analysis Tools

Lab Connections and Applications Learning

Who We Are, Who We Serve

50+ People, 14 PhDs

Comprehensive, Modern Analytical Capabilities

Headquarter Lab in Sunnyvale, CA

600+ Clients, 15-30 new clients / week

Covalent's Analytical Services & Technical Groups

Analytical Chemistry Mass Spectroscopy: ICP-MS and LA-ICP-MS; GCMS ICP-OES / GDOES Raman NMR (solid / liquid + 1,2,3 nuclei)

- XPS, UPS, ISS
- SIMS, TOF-SIMS

X-ray Characterization

- X-Ray Diffraction (XRD)
- X-Ray Reflectometry (XRR)
- Micro-computed X-rav Tomography (Micro-CT)
- 2D / 2.5D / 3D X-ray Inspection & X-ray Radiography
- ED-XRF / WD-XRF

Optical Characterization

- Fourier Transformed Infrared Spectroscopy (FTIR and ATR-FTIR)
- **Spectral Ellipsometry & Advanced Optical Modeling**
- UV-Vis-NIR Spectroscopy

- Root-Cause Failure Analysis

Tensile testing

Misc. Material Properties

- Thermal Analysis: DSC, TGA
- Surface Zeta Potential
- Porometry / Pycnometry
- Gas Adsorption / Chemisorption
- Foam Density / Skeletal Density / Tap Density
- Particle Analysis: DLS / ELS / size distribution / zeta potential

Thickness Measurements

- Film thickness plays a critical role in many applications
 - Corrosion resistance
 - Semiconductor devices
 - Optical and electrical properties
 - And many more...
- Thickness measurements are widely used
 - Optimize and control etching and growth processes
 - Understand functional materials
 - Reverse engineering
- Applicability and limitations of selected techniques
 - using a few case studies and practical examples from different industries
- Q&A with Covalent Experts

Thickness varies over many orders of magnitude

How to measure – Key deciding factors

1. Substrate exposed (or masked)

2. Optically transparent

?

3. Prior knowledge for modeling

4. Everything else

How to measure – Key deciding factors

4. Everything else

Step Height

• What is the expected film thickness?

1	
	V
	_

Step Height

- Narrow applicability: requires exposed substrate
 - Simple and widely used
 - If you are growing the film, you may be able to mask an area of the substrate

Si substrate

- Measure the height difference from the top of the film to the substrate
 - Optical or stylus profilometry for thicker films, AFM for very thin

Example:

Soft polymer film was scratched away from a region of the substrate

Limitations:

Requires exposed substrate

Additional Info Surface roughness

AFM results from Max Schrock

How to measure – Key deciding factors

11

Optically transparent films

• What is the expected film thickness?

Ellipsometry Overview

Optical Property Spectra:

180

160

140

120

100

180

1800

1500

 \triangleleft

- •Very thin films (<5 nm)
- •Very thick films (>5µm)
- •Absorbing films (e.g. metals)

Multilayer Stacks

Method	Applicability	Benefits	Limitations
Ellipsometry	Somewhat optically transparent films	Quick, non-destructive, measure optical properties, mapping	Needs transparency and knowledge of the layers for modeling

Ellipsometry Thickness Sensitivity: Thin Film Interference

Example of raw ellipsometry data with varying film thickness

Basic Example: SiN on Si Wafer

Model Fit To Measured Data

Very Thin Film (<5 nm)

•Film and substrate indices of refraction must be sufficiently different from each other.

Very Thick Film (>5 µm)

17

Thin Metal Films

Multi-Layer Film Stacks

Variable Angle Spectroscopic Ellipsometric (VASE) Data

Anti-Reflection Coating:

+L	_ayer # 8 = Roughness Roughness Thickness = 4.98 nm (fit
+	_ayer # 7 = <u>SiO2_7</u> SiO2_7 Thickness = <u>90.95 nm</u> (fit)
+ L	_ayer # 6 = <u>TiO2_6</u> TiO2_6 Thickness = <u>34.18 nm</u> (fit)
+L	_ayer # 5 = <u>SiO2_5</u> SiO2_5 Thickness = <u>17.28 nm</u> (fit)
+ [_ayer # 4 = <u>TiO2_4</u> TiO2_4 Thickness = <u>43.45 nm</u> (fit)
+ L	_ayer # 3 = <u>SiO2_3</u> SiO2_3 Thickness = <u>36.86 nm</u> (fit)
+ L	_ayer # 2 = <u>TiO2_2</u> TiO2_2 Thickness = <u>11.07 nm</u> (fit)
+ L	_ayer # 1 = <u>SiO2_1</u> SiO2_1 Thickness = <u>27.76 nm</u> (fit)
+ 5	Substrate = Glass

Limitations:

•Need to know approximate stack structure to build representative optical model.

•Cannot have more than a few layers with unknown optical properties.

How to measure – Key deciding factors

1. Substrate exposed (or masked)

2. Not optically transparent

?

3. Prior knowledge for modeling

4. Everything else

Absorbing / Non-transparent films

• What is the expected film thickness?

Strongly absorbing/non-transparent films

- Many materials and coatings strongly absorb UV/VIS/NIR light; can limit optical methods
- However, these materials are transparent to X-rays
- Thickness can be measured by specular X-ray reflectivity (**XRR**) or by the intensity of characteristic X-ray fluorescence (**XRF**) from specific elements in the coating

X-ray Reflectivity (XRR)

- Specular X-ray reflection from surfaces
- Interference induces oscillation (fringes) in the reflectivity signal
- Very high precision, applicable to optically opaque films

Method	Applicability	Benefits	Limitations
XRR	Thin smooth films	High precision, applicable to optically opaque films, models are typically simple, mapping	Needs very smooth films (<3nm) and thin (<300nm typically), modeling requires some knowledge of the sample

XRR film thickness sensitivity and limitations

- Excellent sensitivity
- Fringe frequency independent of optical properties or density

Limitations:

- Thicker films (>200nm) require higher resolution to resolve fringes
- Roughness rapidly reduces fringe intensity

X-ray fluorescence

- Characteristic X-rays emitted during X-ray irradiation
- Emissions proportional to the amount of each element, typically correlated with thickness
- Widely applied to metal coatings
- Less strict roughness requirements than XRR
- Can measure multiple microns thickness
- Operates in serial wavelength dispersive or parallel energy dispersive mode

Additional Info

- Can require standards for quantification
- Energy dispersive detectors can suffer from overlapping peaks due to limited resolution

Method	Applicability	Benefits	Limitations
XRF	Typically, metal-containing coatings	Inexpensive, fast, mapping	Thickness measurement typically requires calibration standards

XRR & XRF

Rigaku XTRAIA MF-3000

XRR patterns and XRF signals were collected at 49 locations across a 300mm wafer featuring a 25nm TiN film.

© 2025 - Rigaku Holdings Corporation and its Global Subsidiaries. All rights reserved. Confidentiality Statement

This document is strictly confidential and intended exclusively for the internal use of the Covalent – Rigaku Partnership, including Rigaku Semiconductor Metrology Division (SMD) and authorized stakeholders of Covalent Metrology. Any dissemination, distribution, or duplication of this document without prior written consent from both organizations is strictly prohibited. The contents reflect joint strategic insights, proprietary frameworks, and marketing recommendations specific to the Covalent–Rigaku collaboration. Unauthorized use may result in legal consequences.

From Data to Insight: Analyzing TiN Thickness Variation

XRF

Film Thickness Variation: Statistical Distribution Across 300mm Wafer

25.8 +/- 0.5nm (1σ)

The data reveals measurable variation in film thickness across the wafer, demonstrating the tool's capability for high-resolution, full-wafer uniformity analysis.

© 2025 - Rigaku Holdings Corporation and its Global Subsidiaries. All rights reserved. Confidentiality Statement

This document is strictly confidential and intended exclusively for the internal use of the Covalent – Rigaku Partnership, including Rigaku Semiconductor Metrology Division (SMD) and authorized stakeholders of Covalent Metrology. Any dissemination, distribution, or duplication of this document without prior written consent from both organizations is strictly prohibited. The contents reflect joint strategic insights, proprietary frameworks, and marketing recommendations specific to the Covalent–Rigaku collaboration. Unauthorized use may result in legal consequences.

XRR

How to measure – Key deciding factors

1. Substrate exposed (or masked)

2. Optically transparent

?

3. Prior knowledge for modeling

4. Everything else

-

Very thin transparent oxides, ex. native oxides

- Optically transparent but often don't have good set of optical properties for modeling
- Very thin
- Form naturally on many materials (ex. Aluminum, Silicon) in air
 - if you try to mask off an area they will grow when the mask is removed
- They often form on rough metal surfaces unsuitable for XRR
- Contain light elements not suitable for XRF

X-ray photoel	ectron spectroscopy	(XPS) Surface Conta	COVALE Chemistry mination	NT GY
 XPS measures the binding energy (BE) of electrons in the sample Sensitive to local coordination environment Metal-Metal or Metal-Oxygen bonds have different BE The surface native oxide layer scatters the photoelectrons emitted from the substrate Thickness calculated using inelastic mean free path (IMFP) of electrons in the oxide 		of electrons X-ra nt e different BE AlO _x <i>Native Oxide</i> e Al <i>Base metal</i> n free path	Photoelectrons	
	A mali cobilita	Denefite	 Very thin films <10nm Requires known IMFP 	
Wethod	Аррисаринту	Benefits	Limitations	
XPS	Very thin layers where the coating and the substrate share an element, ex. native oxides	Can measure very thin native oxides	Requires binding energy difference and known inelastic mean free path, limited to very thin <~5-8nm films.	1 1 30

XPS

31

	AI	
	metal	oxide
Binding Energy (eV)	72.8	74.7
Area %	13.9	86.1

Thickness calculated to be 6.3nm

Method	Applicability	Benefits	Limitations
XPS	Very thin layers where the coating and the substrate share an element, ex. native oxides	Can measure very thin native oxides	Requires binding energy difference and known inelastic mean free path, limited to very thin <~5-8nm films.

How to measure – Key deciding factors

1. Substrate exposed (or masked)

2. Optically transparent

?

3. Prior knowledge for modeling

Cross-section

- Gold standard in many application
 - directly visualize each the layer and measure thickness
 - Widely applicable
 - Requires minimal prior knowledge
 - complex unknown stacks possible
 - No limitations on optical transparency
- Many ways to prepare and image cross-sections
 - Embedding and polishing
 - Slicing with a blade or microtome
 - Focused ion beam
- Discuss two case studies from two industries

COVALENT

METROLOGY

Additional Info Sub-surface features/defects

Epoxy embedded and polished cross-section FIB preparation of TEM crosssection sample

Method	Applicability	Benefits	Limitations
Cross-Section	Almost anything	You can see all the layers	Destructive

Metal Films – nickel on a printed circuit board using optical microscopy

 Buried opaque layers, only accessible by cross-section

Additional interfacial layers visible, non-uniform thickness

0-4µm intermetallic 4µm Ni

Additional Info Defects, microstructure

Multilayer antireflection coating: Camera filter using TEM-EDS

Quick Survey + Sign-up for Free Discovery Consultations

Want to learn more about Covalent's **Thin Film Metrology Services?**

Talk with a Covalent Expert!

Schedule your Appointment now with the link in the chat.

View On-Demand Recordings in the Covalent Academy

OF CLIMATE

SCANNING

TRANSMISSION

INDUCTIVELY

COUPLED PLASMA

Q & A Session

Thank you.

Summary

Method	Applicability	Benefits	Limitations	Additional Information
Step Height	Films with exposed substrates	Simple and direct measurement	Requires exposed substrate, can scratch the sample	Surface Roughness
Cross-Section	Almost anything	You can see all the layers	Destructive	Sub-surface features/defects
Ellipsometry	Somewhat optically transparent films	Quick, non-destructive, measure optical properties, mapping	Needs transparency and knowledge of the layers to model	Optical properties
XRR	Thin smooth films	High precision, applicable to opaque metal layers, mapping	Limited thickness range ~1-300nm with low roughness (<5nm); modeling can require knowledge of the sample	Surface roughness & density of layers
XRF	Typically, metal-containing coatings	Inexpensive, fast, mapping	Thickness measurement typically requires calibration standards	Chemical composition
XPS	Very thin layers where the coating and the substrate share an element, ex. native oxides	Can measure very thin native oxides	Requires binding energy difference and known inelastic mean free path, limited to very thin <~5-8nm films	Surface chemistry and contamination

Many other techniques are available if your sample doesn't fit in these categories. Please reach out to discuss your application